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Motivation - Jaccard index

Jaccard = intersection/union = |y∩ỹ|
|y∪ỹ|

No bias towards large objects, closer to human perception

Popular accuracy measure (Pascal VOC, Cityscapes...)

Multiclass setting: averaged accross classes (mIoU)

Function of the discrete values of all pixels
→ Optimizing IoU is challenging!



Motivation - Dice score

Dice(y, ỹ) = 2|y∩ỹ|
|y|+|ỹ|

The de facto standard measure for medical image analysis

Traced back to Zijdenbos et al., 1994

Chosen due to class imbalance in white matter lesion segmentation

Size and localization agreement

More in line with perceptual quality compared to pixel-wise
accuracy

A generation of radiologists trained reading articles reporting
average Dice score

[Zijdenbos et al., IEEE-TMI 1994]



Jaccard & Dice



Outline of the talk

Similarities, LSHability, and supermodularity

Jaccard & Dice measures

Risk minimization

Dice in the “real world”



Similarities

Definition (Similarity)

A function S : X × X → [0, 1] is called a similarity if

1 S(X,X) = 1;

2 S(X,Y ) = S(Y,X).

For a similarity S, the corresponding distance is simply 1− S.



LSHability

Definition (LSHability)

An LSH for a similarity function S : X × X → [0, 1] is a probability
distribution PH over a set H of hash functions definied on X such that
Eh∼PH [h(A) = h(B)] = S(A,B). A similarity S is LSHable if there is
an LSH for S.

Proposition (Charikar, 2002)

If a similarity is LSHable, its corresponding distance is metric.

note: metric 6=⇒ LSHable



Supermodular similarity

Definition

A similarity S is said to be supermodular if, holding one argument
fixed, the resulting set function of its symmetric difference
fX : A 7→ S(X,X4A) satisfies the following conditions:

1 fX supermodular;

2 monotonically decreasing, i.e. fX(A) ≥ fX(B) for all A ⊆ B.

For a supermodular similarity, the corresponding distance is
submodular

supermodular 6=⇒ metric (Berman & Blaschko, arXiv:1807.06686)

[Yu & Blaschko, ICML 2015; PAMI 2018]



Submodular Hamming distance

Definition (Submodular Hamming distance (Gillenwater et al.,
2015))

Given a positive, monotone submodular set function g s.t. g(∅) = 0, the
corresponding submodular Hamming distance is dg(X,Y ) := g(X4Y ).

Definition (Supermodular Hamming similarity)

A similarity S is called a supermodular Hamming similarity if
S(X,Y ) = 1− dg(X,Y ) for some submodular Hamming distance dg.



Supermodular Hamming similarity

Theorem (Gillenwater et al., 2015)

For a supermodular Hamming similarity S, 1− S is a (pseudo)metric.

Proof.

Denote f = 1− g.

1− S(X,Z) ≤ 1− S(X,Y ) + 1− S(Y,Z) =⇒ (1)

f(X4Y ) + f(Y4Z) ≤ f(X4Z) + 1. (2)

Generalization of triangle inequality: X4Z ⊆ (X4Y ) ∪ (Y4Z)
monotonicity of f : f(X4Z) ≥ f((X4Y ) ∪ (Y4Z)).
supermodularity of f :

f(X4Y ) + f(Y4Z) ≤ f((X4Y ) ∪ (Y4Z))︸ ︷︷ ︸
≤f(X4Z)

+ f((X4Y ) ∩ (Y4Z))︸ ︷︷ ︸
≤1



Rational set similarities

Berman, M. and M. B. Blaschko, arXiv:1807.06686; F. Chierichetti, R. Kumar, A.
Panconesi, and E. Terolli, 2017



LSH preserving functions

Definition (LSH-preserving function)

A function f : [0, 1)→ [0, 1] is LSH-preserving if f ◦ S is LSHable
whenever S is LSHable.

Definition (Probability generating function)

A function f(x) is a probability generating function (PGF) if there is a
probabilty distribution {pi}0≤i<∞ such that f(x) =

∑∞
i=0 pix

i for
x ∈ [0, 1].

Theorem (Theorem 3.1, Chierichetti & Kumar, 2012)

A function f : [0, 1)→ [0, 1] is LSH-preserving iff there are a PGF p
and a scalar α ∈ [0, 1] such that f(x) = αp(x).



LSH-preserving functions are supermodular-preserving
functions

Proposition (LSH-preserving functions are
supermodularity-preserving functions)

Given an LSH-preserving function f : [0, 1)→ [0, 1] and a non-negative
monotonically decreasing supermodular function g such that g(∅) = 1,
f ◦ g is a non-negative monotonically decreasing supermodular function
with f ◦ g(A) ∈ [0, 1] for all A ⊆ V .

Berman & Blaschko, arXiv:1807.06686



LSHability and supermodularity

Supermodularity 6=⇒ metric

LSHable =⇒ metric

LSH-preserving = supermodular-preserving

LSHability and supermodularity 1-to-1 in the table of popular
similarities

Metric supermodular ⇐⇒ LSHable?



Our universe of similarities

LSHP ◦HCSHS L

MG

= ∅?

Berman, M. and M. B. Blaschko: arXiv:1807.06686.



Proof technique - LSHability

Definition (Complete hash)

For a fixed d = |X |, we define a complete hash as a set of hash
functions H such that for all partitions of X , there exists h ∈ H such
that h(xi) = h(xj) iff xi, xj ∈ X are in the same subset of the partition.

The size of Hd is given by the dth Bell number, which satisfies the
recurrence B0 = 1,

Bd =

d−1∑
k=0

(
d− 1

k

)
Bk. (3)

Exponential in d.



Complete hash: example for |X | = 4



Proof technique - LSHability
A ∈ R(d2)×Bd :

A(i,j),k =

{
1 if Hik = Hjk,

0 otherwise.
(4)

b ∈ R(d2):

b(i,j) = S(i, j). (5)

Proposition

A similarity S : X × X → [0, 1] is LSHable iff for A and b defined as in
Equations (4) and (5), the following linear system is feasible for some
x ∈ RBd:

∀i, xi ≥ 0,

Bd∑
i=1

xi = 1, Ax = b. (6)

Furthermore, for any x satisfying this linear system, PH(h) = xh is a
valid LSH for S.



Proof technique

Properties characterized by an (exponential sized) set of linear
constraints on the similarity matrix
Exhaustive search over a good guess of potential counterexamples

Proposition (Berman & Blaschko, 2018)

That a similarity is metric supermodular does not imply that it is
LSHable.

Proof.

We prove this with a counterexample that is metric supermodular but

not LSHable: S =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 γ
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 γ
0 0 0 0 0 0 1 1− γ
0 0 0 γ 0 γ 1− γ 1


, where e.g.

γ = 1/8.



Jaccard and Dice

LSHP ◦HCSHS L

MG

= ∅?

D

J

Berman & Blaschko, arXiv:1807.06686; Yu & Blaschko, ICML 2015; AISTATS 2016;
PAMI 2018.



Relationship between Jaccard and Dice

D(y, ỹ) :=
2|y ∩ ỹ|
|y|+ |ỹ|

, J(y, ỹ) :=
|y ∩ ỹ|
|y ∪ ỹ|

, H(y, ỹ) := 1− |y \ ỹ|+ |ỹ \ y|
d

,

(7)

Hγ(y, ỹ) := 1− γ |y \ ỹ|
|y|

− (1− γ)
|ỹ \ y|
d− |y|

,

(8)

D(y, ỹ) = 2J(y,ỹ)
1+J(y,ỹ) and J(y, ỹ) = D(y,ỹ)

2−D(y,ỹ)
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|y ∩ ỹ|
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Jaccard and Dice - approximation

Definition (Absolute approximation)

A similarity S is absolutely approximated by S̃ with error ε ≥ 0 if the
following holds for all y and ỹ:

|S(y, ỹ)− S̃(y, ỹ)| ≤ ε. (9)

Definition (Relative approximation)

A similarity S is relatively approximated by S̃ with error ε ≥ 0 if the
following holds for all y and ỹ:

S̃(y, ỹ)

1 + ε
≤ S(y, ỹ) ≤ S̃(y, ỹ)(1 + ε). (10)

Proposition

J and D approximate each other with relative error of 1 and absolute
error of 3− 2

√
2 = 0.17157 . . . .



Jaccard, Dice, and weighted-Hamming

Defining “distortion” of an approximation as a one-sided version of our
definition of a relative approximation:

Theorem (Chierichetti et al., 2017)

Jaccard is the minimum-distortion LSHable approximation to Dice

Proposition

D and Hγ (where γ is chosen to minimize the approximation factor
between D and Hγ) do not relatively approximate each other, and
absolutely approximate each other with an error of 1. We note that the
absolute error bound is trivial as D and Hγ are both similarities in the
range [0, 1].
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Regularized risk
Consider a population distribution P (x, y) and an empirical measure
from a sample of size n, Pn(x, y).

Definition (Risk)

For a loss function ∆ : Y × Y → R+, the population (true) risk of a
function f : X → Y is

R(f) := E(x,y)∼P [∆(f(x), y)] (11)

We may similarly consider the empirical risk

R̂(f) := E(x,y)∼Pn
[∆(f(x), y)] (12)

In practice, we optimize something like

arg min
f∈F

E(x,y)∼Pn
[`(f(x), y)] + λΩ(f) (13)

where λ > 0 is chosen by a model selection procedure, and ` is a
tractable (at least differentiable a.e. and not piecewise constant)
surrogate to ∆.
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Lovász hinge and Lovász-Softmax

[Yu & Blaschko 2015; 2018; Berman, Rannen Triki, & Blaschko CVPR 2018]



Multi-class extension

Mc(y, ỹ) = {y = c, ỹ 6= c} ∪ {y 6= c, ỹ = c}

∆J(y, ỹ) =

k∑
j=1

|Mj(y, ỹ)|
|{y = c} ∪Mj(y, ỹ)|

[Berman et al., CVPR 2018]



Jaccard results



What about Dice?
Jaccard has many favorable properties, but medical legacy of Dice
won’t be wiped away overnight

Optimizing Jaccard minimizes an upper bound on Dice:

1−D(y, ỹ) ≤ 1− J(y, ỹ) =⇒
E(x,y)∼Pn

[1−D(y, f(x))] ≤ E(x,y)∼Pn
[1− J(y, f(x))]

Optimizing Dice minimizes an upper bound on Jaccard:

ϕ(x) = 2x/(1 + x)

Jensen’s inequality:

E(x,y)∼Pn
[1− J(y, f(x))] = E(x,y)∼Pn

[ϕ(1−D(y, f(x)))]

≤ ϕ(E(x,y)∼Pn
[1−D(y, f(x))])

ϕ monotonic over [0, 1] =⇒ for every λ in minf ϕ(R̂(f)) + λΩ(f)

there exists λ̃ s.t. minf R̂(f) + λ̃Ω(f) has the same minimizer
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Dice results

77 learning-based segmentation papers in MICCAI 2018 - evaluate
with Dice
47 trained using per-pixel loss [Bertels et al., under review 2019]



Lovász-Softmax code - PyTorch & TensorFlow
https://github.com/bermanmaxim/LovaszSoftmax

We’re looking for grad students to start as early as Oct, 2019
Apply directly by emailing a CV

Matthew Blaschko
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